import pandas as pd
import os
24513
= './results2' folder_path
= [] all_data
for file_name in os.listdir(folder_path):
if file_name.endswith('.csv'):
= pd.read_csv(os.path.join(folder_path, file_name))
df
all_data.append(df)
= pd.concat(all_data, ignore_index=True) merged_df
merged_df
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ABOD | 17.510304 | 0.994275 | 0.000000 | 0.000000 | 0.000000 | 0.500000 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.010000 | 314572 | 0.005725 | NaN |
1 | COPOD | 0.084473 | 0.990832 | 0.304442 | 0.468073 | 0.368928 | 0.730958 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.010000 | 314572 | 0.005725 | NaN |
2 | ECOD | 0.083442 | 0.988054 | 0.165241 | 0.268184 | 0.204488 | 0.630192 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.010000 | 314572 | 0.005725 | NaN |
3 | GMM | 0.141062 | 0.991659 | 0.334139 | 0.460300 | 0.387202 | 0.727509 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.010000 | 314572 | 0.005725 | NaN |
4 | HBOS | 0.012526 | 0.993938 | 0.000000 | 0.000000 | 0.000000 | 0.499831 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.010000 | 314572 | 0.005725 | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2139 | NeuralNetFastAI | NaN | 0.972080 | 0.139732 | 0.751805 | 0.235663 | 0.898952 | False | Autogluon | 0.018278 | 14017 | ['amt'] | 0.299993 | 314572 | 0.005725 | NaN |
2140 | XGBoost | NaN | 0.961230 | 0.106459 | 0.780677 | 0.187367 | 0.962270 | False | Autogluon | 0.018278 | 14017 | ['amt'] | 0.299993 | 314572 | 0.005725 | NaN |
2141 | NeuralNetTorch | NaN | 0.976031 | 0.159245 | 0.744586 | 0.262375 | 0.953301 | False | Autogluon | 0.018278 | 14017 | ['amt'] | 0.299993 | 314572 | 0.005725 | NaN |
2142 | LightGBMLarge | NaN | 0.973211 | 0.144070 | 0.744586 | 0.241426 | 0.959773 | False | Autogluon | 0.018278 | 14017 | ['amt'] | 0.299993 | 314572 | 0.005725 | NaN |
2143 | WeightedEnsemble_L2 | NaN | 0.973211 | 0.144070 | 0.744586 | 0.241426 | 0.959773 | False | Autogluon | 0.018278 | 14017 | ['amt'] | 0.299993 | 314572 | 0.005725 | NaN |
2144 rows × 16 columns
merged_df.drop_duplicates()
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ABOD | 17.510304 | 0.994275 | 0.000000 | 0.000000 | 0.000000 | 0.500000 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.01 | 314572 | 0.005725 | NaN |
1 | COPOD | 0.084473 | 0.990832 | 0.304442 | 0.468073 | 0.368928 | 0.730958 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.01 | 314572 | 0.005725 | NaN |
2 | ECOD | 0.083442 | 0.988054 | 0.165241 | 0.268184 | 0.204488 | 0.630192 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.01 | 314572 | 0.005725 | NaN |
3 | GMM | 0.141062 | 0.991659 | 0.334139 | 0.460300 | 0.387202 | 0.727509 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.01 | 314572 | 0.005725 | NaN |
4 | HBOS | 0.012526 | 0.993938 | 0.000000 | 0.000000 | 0.000000 | 0.499831 | False | pyod | 0.008171 | 420500 | ['amt'] | 0.01 | 314572 | 0.005725 | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2111 | LOF | 0.078528 | 0.874442 | 0.006829 | 0.144919 | 0.013044 | 0.511781 | False | pyod | 0.016841 | 42050 | ['amt'] | 0.10 | 314572 | 0.005725 | NaN |
2112 | MAD | 0.002493 | 0.975665 | 0.156133 | 0.737923 | 0.257733 | 0.857479 | False | pyod | 0.016841 | 42050 | ['amt'] | 0.10 | 314572 | 0.005725 | NaN |
2113 | MCD | 0.011081 | 0.971313 | 0.136633 | 0.754026 | 0.231346 | 0.863295 | False | pyod | 0.016841 | 42050 | ['amt'] | 0.10 | 314572 | 0.005725 | NaN |
2114 | PCA | 0.003764 | 0.937483 | 0.041194 | 0.445308 | 0.075411 | 0.692813 | False | pyod | 0.016841 | 42050 | ['amt'] | 0.10 | 314572 | 0.005725 | NaN |
2115 | ROD | 3.873942 | 0.881445 | 0.000169 | 0.003331 | 0.000322 | 0.444917 | False | pyod | 0.016841 | 42050 | ['amt'] | 0.10 | 314572 | 0.005725 | NaN |
1359 rows × 16 columns
'./results2/240513_meged.csv', index=False) merged_df.to_csv(